Saxonian Institute of Surface Mechanics

O&PfC® Product Series


Our software series O&PfC® (Oliver&Pharr for Coatings) is an extracted program module from our premium suite FilmDoctor® Studio which enables you to mechanically characterize complex surfaces properly by fully automatic analysis of indentation measurements. Such a mechanical characterization requires calculation of generic material properties including the real Young's modulus of each layer, the yield strength of each layer, and the Poisson's ratio of each layer, which only O&PfC® can evaluate for almost arbitrary structured materials. Particularly, its simple handling allows you to gain more information out of remaining or performed measurements within a few minutes only. Due to the automation of the procedure, you get not only the requested Young's modulus in the twinkling of an eye, but also the complete evaluation (28 field variables likes von-Mises-stress, normal stresses etc.) of the elastic stress-strain field inside the sample.

Physical characterization of surfaces by means of nano indentation
mechanical characterization of arbitrary structured surfaces (e.g. thin films or nano composites, etc.) by means of physical analyzes of instrumented indentations (for instance nanoindentation, microindenation and so forth)


The features covered below are features of the model on which this product series is based. Therefore, they may differ from the capabilities of the individual editions as they are not all completely implemented in all editions.

Supported Material Structures

This software series[?] allows you to analyze among others the following surface structures by evaluation of mechanical contact measurements:

  • multi-layer coatings (up to 100 layers)
  • thin films (theoretically down to 1 angstroem*)
  • thick films (theoretically unlimited*)
  • with intrinsic/thermal stresses and gradients of it (functional)
  • laminate structures
  • composites
  • nano-particle-enhanced coatings (nanotubes, fullerenes, ...)
  • inclusions and defects not only within layers but also at interfaces
  • superlattice
  • homogeneous monolithic bulk materials (e.g. substrate only)

* Practically it depends on capabilities (e.g. the resolution and noise floor) of your measurement instrument.

Measurement Conditions

Among others, the following measurement conditions and measurement effects can be taken into account for the evaluation of mechanical surface measurements by this measurement analysis software series[?]:

  • multi-axial loads (normal, lateral, and rotating loads)
  • tilting and deflection of the indenter
  • actual indenter shape, hence also edges and asymmetry of indenter tips (e.g. required for Berkowich and Vickers tips)
  • surface roughess, actual three-dimensional surface topography and surface curvature (e.g. from 3D pre-scan by AFM), respectively
  • creep / sink-in: time-dependent material properties of viscous or visco-elastic materials (e.g. polymers)
  • pile-up / residual stresses of ductile materials, plastic deformation, fractures/cracks of brittle materials[?]
  • friction between surface and indenter
  • temperature gradients / fields (e.g. necessary for high temperature measurements or tribology tests)
  • weak interfaces / poor interface adhesion

Evaluable Contact Measurements

The O&PfC series®[?] enables you to analyze the following mechanical surface measurements:

  • instrumented nano, micro, and macro indentation measurements and hardness tests, respectively
  • multi-axial indentation measurements (with additional lateral or rotating loads)
  • cyclic, dynamic, and multi-load indentations (e.g. Continuous Stiffness Measurement method of Agilent, Quasi Continuous Stiffness Measurement method of ASMEC, ESP of Fischer)
  • impact tests and drop tests
  • high temperature indentations
  • and many more

Mechanical Characterization

The most important aim of mechanical characterization is the evaluation of generic material properties, which are independent of measurement conditions (like material structure of the sample, maximum indentation depth etc.). Hence, it is necessary to take all these measurement conditions into account to evaluate such a measurement properly. That is why we have extended the classic Oliver&Pharr method for such conditions. This Oliver&Pharr method extended for layered materials (Oliver&Pharr for Coatings) enables you to calculate - among others - the following generic material properties[?]:

  • real Young's modulus (elastic modulus) of each layer or substrate
  • yield strength of each layer or substrate
  • Poisson's ratio of each layer or substrate
  • intrinsic, thermal, or residual stresses of each layer or substrate
  • layer thicknesses
  • time-dependent elastic modulus of visco-elastic materials (e.g. foams, tissues, polymers)
  • dynamic parameters like storage modulus E' and loss modulus E''

Only these generic physical material properties can be reused in nearly any other surface structure (e.g. for surface optimization by means of modeling and simulation or for analysis of complex contact measurements like scratch tests) without being obliged to repeat the characterization.

The O&PfC allows one to determine the correct hardness, too. But be aware: Hardness is neither a physical nor a generic material property!

Result page of O&PfC®
Result page of O&PfC®, showing real Young's moduli, yield strength, corrected hardness, and measurement information share of each constituent.

Information Material

Connection to Measurement Equipment

The following measurement equipment manufacturers already provide a direct export interface to our software, which convert measurement data directly into our format:

  • Helmut Fischer GmbH
  • ASMEC GmbH - member of Zwick/Roell
  • MicroMaterials Ltd.
  • Anton Paar (formerly CSM Instruments)
  • Fischer-Cripps Laboratories Pty Ltd.

Further manufacturers are still developing and will follow soon.

Available in our Online Shop

O&PfC® Instrumented Indentation Analysis Software (2 products)
Determination of true coating properties like
  • elastic modulus (EC)
  • hardness (HC)
  • yield strength (YC)
for 1 layer from indentation measurement data.
add to shopping cart
100.00 €
  • 5 layers
  • weakened interface
  • true coating properties:
    • elastic modulus (EC)
    • hardness (HC)
    • yield strength (YC)
  • whole contact field with
    • all displacements and strains
    • all normal, shear, and principal stresses as well as invariants
    • von Mises comparison stress
add to shopping cart
10,000.00 €

System Requirements

Minimum* Optimum
operating system: Microsoft Windows XP SP3
Microsoft Windows Vista
Microsoft Windows 8
Microsoft Windows 7
word size: 32 or 64 bit 32 or 64 bit
CPU: 2 cores
1 GHz
≥ 4 cores × 2 threads
≥ 2 GHz
RAM: 512 MB ≥ 4 GB
free HDD space: 24 MB (in system partition)
500 MB (for project files)
24 MB (in system partition)
≥ 3 GB (for project files)
screen: 1024 x 768 pixel
16 bit color depth
1920 x 1080 pixel
32 bit color depth
anti-virus software: Read information!
access rights for installation: administrator rights
access rights for use: user rights administrator rights
* If your computer meets only the minimum system requirements, the operation comfort (usability) and operating speed might be restricted.

Please ask us for more information!

shopping cart Cart: empty
© 2006-2016 Saxonian Institute of Surface Mechanics. Legal informations. Google+ Twitter