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Intrinsic stresses – Their influence on the yield s trength 

and their measurement via nanoindentation 

Abstract 

It is well known that intrinsic stresses can dramatically affect the mechanical wear resistance 
of materials. Thus, within this work completely analytical extended Hertzian contact models 
for normal, tilted, sliding and rotating indenter loads will be combined with a great variety of 
intrinsic stress distributions in order to illustrate this effect. It will be shown that in 
dependence on the character and sign of the internal loads (intrinsic stresses) the load carrying 
capacity for distinct external contact load distributions can vary significantly. Combined with 
a completely analytical defect model it can be shown that this influence is even bigger in the 
case of repeated loading. According to the analytical model we find that, under a distinct 
external mechanical loading wear can be diminished or expedited in dependence on the 
intrinsic stress distributions. 
In addition it will be shown theoretically and experimentally that measurement of intrinsic 
stresses should be possible via mixed load indentation experiments. 

1. Introduction 

Newly developed and highly sophisticated nanoindenters of “the next generation” (e.g. [1, 2] 
and on the more atomic scale the devices from Hysitron, ANFATEC and Asylum Research) 
appear to open up a wide range of combinations of the rather classical wear tests like for 
example scratch based test methods (pin on disc, lateral scratch etc.) with the more physical 
character of nanoindention experiments.  The key development for closing the gap between 
wear tests and so called depth sensing indentation methods is the introduction of additional 
lateral degrees of freedom for the movement and measurement procedure of the indenter 
device. This leads us to depth, lateral displacement, tilting moment or even rotation angle 
sensing indentation methods. So, combined with classical wear test procedures one might 
even go so far to call this the missing experimental link for a better physical understanding of 
some mechanically driven wear mechanisms. However, as it is well known and will also be 
shown within this paper, a lot of material failure mechanisms cannot be separated from the 
intrinsic stresses residing in the material. Thus, the combination of intrinsic stresses and those 
stress fields caused by certain external loads will be the main topic of this paper. 
Any kind of surface treatment, be it of chemical, mechanical or thermal kind, can cause 
material displacements and subsequently stresses. Also external loadings of bigger scales like 
for example caused by bending loads within only edge supported bars cause stresses which, 
with respect to additional mechanical loads of smaller scales like for example surface 
contacts, could be considered as “intrinsic” from the smaller scale point of view. In some 
cases only the inhomogeneous material structure is responsible for the occurrence of such 
stresses. So, e.g. intrinsic stresses within thin film-substrate compounds are mainly caused by 
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atomic mismatch at the interface between substrate and coating, thermal stresses resulting 
from the difference between deposition and room or service temperature and other effects like 
for example ion bombardment coming from the deposition process itself. Apart from finite 
element calculations dealing with the problem of intrinsic stresses (see e.g. Spaeth et al [3]) 
and very few somewhat more general approaches (e.g. from Finnie et al [4], Hoger [5] and 
Suhir [6]), the problem of intrinsic stresses has mostly been considered by using the so called 
“thin plate simplification”, which neglects all stress components pointing in the direction of 
the plate normal axis. A plate-like form of the film-substrate-compound means that the total 
thickness, htot, is constant and small in comparison to its lateral dimensions. So, if one takes 
for example the z-axis as the normal axis of the coating-substrate-system one has to set: 
 0xz yz zzσ σ σ= = = . (1) 

A first consideration of the effect of intrinsic stresses came from STONEY [7] who has 
published a simple formula describing the bending of a coated bar in dependence on the 
intrinsic stress within the film. This internal stress in the film on a bar or also on a plate-like 
substrate causes the film-substrate compound to warp until mechanical equilibrium is reached, 
i.e. until both net force and bending moment are zero. From the curvature of the elastically 
deformed coated substrate the average film stress, σ

f, can be calculated. When the thickness of 
the film, hf, is small compared to that of the substrate, the above mentioned simple formula of 
STONEY [7] holds. It can be given as follows: 
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with R - radius of curvature and Es - YOUNG´s modulus of the substrate. In those cases, where 
the film is not thin compared to the substrate, this formula has to be modified (e.g. [8, 9]). In 
its original form the STONEY formula is valid only for a narrow coated beam. The index “zz” 
denotes the stress component in direction of the length side of the beam which we chose to be 
along the z-axis. When measuring thin films deposited on plate-like substrates, the 
corresponding biaxial deformation has to be taken into account (see for instance [8]) by using 
the biaxial modulus, Eb,s, of the substrate rather than the YOUNG´s modulus alone: 

 Es → Eb,s = Es / (1 - νs)  (3) 

with νs - POISSOŃs ratio of the substrate. A very detailed discussion of these formulae and 
their limits is given in [9]. 

The knowledge of the correct strength and distribution of intrinsic stresses is of great 
importance for the further considerations within this work. Because here the effect of intrinsic 
stresses on the resulting stress fields in connection with additional external loads shall be 
discussed and consequently only the correct assumptions for the intrinsic stresses can 
guarantee sufficiently correct resulting elastic fields of the combined internal and external 
loading. For this, however, we would need correct 3-dimensional approaches rather than two 
dimensional plate approximations as described above.  
Thus, we will start with the introduction of linear elastic models providing sufficient flexible 
tools for the modelling of intrinsic stresses. Because we are interested in the effects of 
external contact loads, we will concentrate here on intrinsic stress models near surfaces 
leading us to intrinsic stress profiles of “layered” character. We also need to consider some 
basics in the modelling of relatively general contact problems. This, however, can be kept 
short due to the fact that most of the theoretical basics are well published. Applying these 
modelling tools, we will then consider hypothetical and practical examples demonstrating the 
importance of intrinsic stresses and their influence on the stability and reliability of 
mechanically loaded surfaces. By using certain components of the deformation field as critical 
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values, conclusions can be drawn towards the potential wear behaviour of the material surface 
in question. 

2. Modelling intrinsic stresses 

2.1. The simple case of plate-like samples 

In those cases where the coating-substrate-compound can be considered as plate-like and the 
film thickness is small compared to the substrate thickness, the following two assumptions 
can be made (see for instance [8] or [9]):  

• the approximation (1) is valid, 
• the film-stress can be considered as being independent from the distance of the 

interface (here the z-axis shall be parallel to the plate’s normal). 
This automatically yields a linear z-dependant stress within the substrate [9] and we obtain a 
very simple stress distribution where only the stress tensor components σxx, σyy, τxy=σxy are of 
importance. If we in addition assume to have isotropic or transversely isotropic (the latter with 
the c-axis parallel to the substrate normal) substrate materials of symmetry of revolution and 
homogeneous deposition conditions over the whole substrate surface, we result in only one 
governing stress value σrr, which is the radial stress1. While this stress is widely assumed (e.g. 
[8]) to be homogeneous within the film, it follows a linear z-dependant function within the 
substrate. This principle distribution of the σrr stress component occurs only under the 
conditions mentioned above. 

2.2. A more general three dimensional model for fil m stresses 

Unfortunately for most cases, like coated tools, car components or massive lenses, the 
assumption of a plate-like film-substrate-compound is not valid and thus the stress 
distribution might be completely different from that one described above. This holds 
especially for the substrate. For the film, however, we still can assume that σzz=0 is valid and 
the biaxial stress is homogeneous over the film thickness as long as the film is thin and there 
is no significant displacement, phase transition or other inelastic effects of any of the parts of 
the film causing local stress releases. This becomes clear if one notices that the linear z-
                                                 
1 One can evaluate this by combining the thin plate approximation (1) with the isotropy condition for material 

properties and deposition process (σxx=σyy, σxy=0) and the following transformation rules: 

 2 2cos sin 2 sinrr xx xy yy xxσ ϕ σ ϕ σ ϕ σ σ= + + = , 

 2 2cos 2cos sin sinyy xy xx xxϕϕσ ϕ σ ϕ ϕ σ ϕ σ σ= − + = , 

 cos 2 sin 2 ( ) / 2 0r xy xx yyϕσ ϕ σ ϕ σ σ= − − = , 

yielding: 
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dependant stress distribution within the substrate is caused by the bending of the compound 
but in all cases of non-plate-like substrates this is not possible. So the question arises: If we 
can still assume a constant frrσ  stress distribution for the coating, how could we come to a 
suitable stress description for the substrate? 
To answer this question we assume the coating to be separated from the substrate and pressed 
at its rim such that exactly the bi-axial intrinsic stress state with σxx and σyy appears. This pre-
stressed coating is now “stuck” on the substrate. The external forces Fx and Fy producing the 
pre-stress-state are removed allowing the coating-substrate-system to find its equilibrium. The 
former forces acting on the rim of the coating must now be taken on by the elastic stiffness of 
the substrate. They (the forces) couple into the substrate as shearing forces Sx and Sy via its 
surface. In order to simplify the calculation, we consider a substrate of square geometry with 
the side length s. We do not know yet the distribution of this shearing stress on the substrate 
surface respectively want to keep it as flexible as possible, so we start with a general approach 
of the problem in the case of a rectangular substrate, which can be given due to the following 
displacements (variation of the approach given in [10]) ( , , )u u v w=r

 in x, y and z-direction: 
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 (4) 

with ,
i k

c u
a b

π π= =  (a and b denoting the side lengths of the rectangular substrate) and 

i,k=1,3,5,7…, which assures the normal stresses σxx and σyy being zero at the substrate rim. 

The constants , , , , ,A B C D F G  and , , , , ,A B C D F G% % %% % %  are different for each film and substrate; 
so altogether we have to determine 24 constants in the case of a one-coating-substrate 
compound. In this case a suitable Fourier series would be necessary to construct the desired 
stress distribution for either the normal or shearing stresses within any chosen z=constant-
plane of the compound. So, for example we could demand intrinsic stress( , )f film

rr x yσ σ=  (e.g. 
f

rr constσ = ) over the whole coating area. It can be shown that (4) satisfies the equation for 
equilibrium for an isotropic elastic medium. The stress components can be found using the 
following identities: 

 , , , ; ; ; .
1 1 2jk jk ll jk xk yk zk

E u v w
u u with j k x y z u u u

k k k

νσ δ
ν ν

∂ ∂ ∂ = + = = = = + − ∂ ∂ ∂ 
 (5) 

By setting the co-ordinate origin at the interface (z=0), the further boundary conditions: 
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give the equations necessary to determine all constants. One can extract from (4) that the 
structure of the normal stresses in lateral direction of the film-substrate-compound xxσ  and 

yyσ  can in principle be given in the following form: 

 1 1
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Now we need to find equations for the determination of the Fourier coefficients ci and ck. 
From the bi-axial stress conditions fxxσ  = f

yyσ  = σ =const at a distinct depth z=z0 together 

with (6), we obtain: 
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In the case of a square sample of side length s the equations above simplify significantly: 
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with u=a=b and ,
i k

a b
s s

π π= =  and i,k=1,3,5,7…, which again assures the normal stresses 

σxx and σyy being zero at the substrate edges when the co-ordinate origin is laid in the centre 
of the rectangle’s surface. The further boundary conditions at the interface, surface and 
bottom must now read: 
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They give the equations necessary to determine all constants including the coefficients cik. 
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In the case of thin films and plate-like substrates this approach should agree with the results 
given by the equation of Stoney, which in fact it does [9, 11].  
It should be pointed out here that by extending the method described above to several layers 
with more degrees of freedom for defining arbitrary stress distributions at a multitude of 
planes in z-direction, also relatively complex intrinsic stress distributions can be constructed. 

2.3. A defect model: Tool for the construction of r elatively general 

intrinsic stress distributions 

Introducing circular defects of radii ai of the loading type: 

 

2 2 2 2
0 ,

0

2 2 2 2
0 ,

0

( ( ) ( ) , 0)

( ( ) ( ) , 0)

N
n

rz i i i i i n i i i
n

N
n

rz i i i i i n i i i
n

r x x y y z c r a r

r x x y y z c r a r

τ

τ

τ

τ

=

=

= − + − + = −

= − + − − = − −

∑

∑
 (9) 

 

2 2 2 2
0 ,

0

2 2 2 2
0 ,

0

( ( ) ( ) , 0)

( ( ) ( ) , 0)

N
n

zz i i i i i n i i i
n

N
n

zz i i i i i n i i i
n

r x x y y z c r a r

r x x y y z c r a r

σ

σ

σ

σ

=

=

= − + − + = −

= − + − − = − −

∑

∑
. (10) 

(with xi, yi, zi denoting the centre of the defect and n=0,2,4,6) directly allows us the 
application of the extended Hertzian approach [12] that provides a complete solution of the 
elastic field of the defect loading given above. By superposing a multitude of such “defect 
dots” one could model (simulate) a very great variety of intrinsic stress distributions. The 
evaluation of the complete elastic field is straight forward. It only requires the evaluation of 
certain derivatives of the potential functions given in [12]. 

3. Modelling of contact loads for layered materials 

3.1. A brief description of the extended Hertzian a pproach 

It is well known that the classical Hertzian theory [13] describes the normal surface 
displacements of parabolically shaped indenter (with displacement wI) and sample body (with 
displacement wS) of similar geometry due to: 

 
2

0

( ) ( )S I

r
w r w r h

d
+ = − , (11) 

(r is giving the distance to the contact centre and d0 is a parameter depending on the radii of 
curvature of both indenter and sample-body). Because this theory does not provide enough 
degrees of freedom for the modelling of more practical contact problems, Schwarzer extended 
the Hertzian theory [12] and evaluated the complete potentials necessary to obtain the elastic 
field for a governing contact equation of the type 
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He also presented the procedures necessary to obtain the potential functions for even higher 
exponents n of rn. Thus, now normal and even tangential [14] load distributions of the form 
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with n=0,2,4,6 and arbitrary constants c (and by following the instructions of the 
mathematical procedures for obtaining the complete potential functions as given in [12] and 
[14] even arbitrary high but only even N) can be solved completely.  
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Fig. 1: Resulting normal pressure distribution for a variety of ratios of contact radius a (= 1µm to 

5µm) to coating thickness h=1µm evaluated for a coating substrate-compound with equal 
Poisson’s ratios and Young’s moduli 700GPa (coating) on 70GPa. Radius of indenter: 10µm 
(diamond). Evaluation performed with the software FilmDoctor [23] using the extended 
Hertzian approach. 

 
Together with the lateral load one often faces tilting moments leading to a normal surface 
stress distribution of the form 



 N. Schwarzer, About Intrinsic Stresses – their effects and measurement via indenter, publication 
of the Saxonian Institute of Surface Mechanics, online at www.siomec.de/pub/2007/001 

  contact@siomec.de                                                                        www.siomec.de 

8

 ( )1 2 2
0

0

( , ) cos
N

n
zz n

n

r c r a rσσ ϕ ϕ+

=
= −∑ . (15) 

These stresses can for example occur when the indenter shaft is dragged over the surface. 
Because the shaft itself is elastic and thus would be bent during the lateral loading, an 
unavoidable tilting moment results on the contact surface. Also curved surfaces (e.g. due to 
roughness) can lead to such tilting moments. 
This opens up a wide range of new analysing techniques in order to extract more information 
from indentation experiments [12-16] even in cases of very thin coatings below 100nm [17] 
where the approach has been used to extract the yield strength of coatings down to 35nm. 
Motivated by the structures of the new governing contact equation (12), this approach has 
been dubbed “extended Hertzian” by the author.  
The approach and its uses have been considered rather comprehensively in [18]. 

 
Fig. 2: Illustration of the mathematical method of superposition of extended Hertzian load 

distributions with different contact radii a i (and in principle also different loads). 

3.2. Extension to layered materials 

By applying the method of image loads, the approach given above can also be extended to 
layered materials [19]. This is of special importance for all sorts of mechanical contact 
problems of symmetry of revolution if one intends to determine the resulting normal stress 
distribution which can be quite different from the non layered case (fig. 1). With a special 
mathematical procedure [11] the method of image loads can also be used for the modelling of 
graded coatings. 
 

3.3. Extension to load-dots 

Another useful extension is the introduction of several load dots [11] allowing to treating of 
even more complex contact problems (fig. 2). This method can for example be used to 

 a5 
 a3 

Pressure profile of 
the extended 

Hertzian 
load dots 

surface 
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incorporate the otherwise neglected lateral displacement [20] for a more accurate treatment of 
e.g. indentations with conical indenters [21] or to correctly describe the tip rounding of 
indenters during depth sensing indentation experiments (examples are to be found in [17] and 
fig. 3 � in the latter both tip rounding and the effect of lateral displacement has been taken 
into account) or – as done in section 6 of this paper – to superpose distinct normal and lateral 
loads in order to simulate a spherical or conical punch in parts bonded to the sample. 

 

Fig. 3: Resulting von Mises stress distribution for a diamond  cone (half angle 70.3°) with rounded tip 
(radius of tip 190nm) pressed into a CNx-coating of 400nm thickness with 130GPa Young’s 
modulus (Poisson’s ratio 0.25) on silicon at 20mN. The evaluation has been performed with the 
software FilmDoctor [23] using a load dot model with 30 load dots (c.f. fig. 2). 

3.4. Extension to rotating indenters 

Another useful tool might be the model of a rotating indenter, because here one could 
combine the advantage of adding a shearing load component with maintaining the symmetry 
of revolution. In order to model this type of mixed loading, one simply has to add the 
following shearing stress distribution 
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to the normal load on the surface of the sample.  
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4. Evaluation 

The potential functions necessary for the evaluation of the elastic fields of the above given 
surface load distributions can be evaluated by applying the method of Fabrikant [22]. The 
method can be applied directly for homogeneous half spaces and in combination with the 
image load method [19] also for layered materials. However, all of the models mentioned 
above are woven into a software package [23] which can be considered as a tool box for 
modelling a great variety of internal and external load problems for homogeneous and layered 
materials. The package can be downloaded and used for free for a restricted time. Some 
models and features are also accessible for free via an internet portal 
(www.siomec.de/service) without the need of downloading or installing special technical 
software. Within this paper we will rather often use the von Mises stress given as 

 ( ) ( ) ( ) ( )( )2 2 2 2 2 21
6*

2M xx yy zz yy xx zz xy xz zyσ σ σ σ σ σ σ τ τ τ= − + − + − + + + . 

 
Fig. 4:  Resulting normal stress in x-direction for a single-layer substrate system with mixed normal 

and lateral load (load 52.7mN, sliding friction with µ=0.3, contact radius 1µm; material 
parameters given in section 5.2) for different intrinsic coating stresses. 

5. About the effect of intrinsic stresses on the load carrying 

capacity of homogeneous and layered materials 

The basis of the following considerations is the assumption that mechanical wear starts with 
failures caused by certain stress fields exceeding critical limits at distinct points or areas 
within the material. Due to effects like defect accumulation or propagation it might well be 
that only repeated loading respectively exceeding of these critical stress values results in 
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failure. This, however, does not compromise our view that a great variety of nanoscopic 
mechanical failure and subsequent wear can be described as a function of certain critical 
stress values perhaps together with also critical numbers of load cycles where such critical 
stresses occur. The stress fields are either caused by external or internal (intrinsic) loads. Here 
we will mainly consider biaxial intrinsic stress distributions, e.g. stresses laying in-plane and 
parallel to the surface. Assuming now that surface fracture is caused by tensile stresses, one 
can easily deduce that the biaxial intrinsic stresses linearly increase or decrease the probability 
for such failure. This is because stresses in the linear elastic regime are simply additive and so 
the biaxial stress must be added to the stresses resulting from any external load. Thus, one 
finds decreasing mode I surface fracture probability for compressive, and increasing 
probability for tensile biaxial intrinsic stresses. We demonstrate this for a simple one-layer-
substrate system with Hertzian load and additional lateral surface traction in x-direction 
(scratch with Coulomb friction µ=0.3, see figure 4). However, for other failure mechanisms 
like mode II, mode III fracture and plastic flow no such simple answers can be given because 
the combination of intrinsic and external loads often results in relatively complex stress 
distributions. Here a stringent and comprehensive consideration of the resulting deformation 
fields is necessary in order to decide upon the load carrying capacity of the material in 
question with respect to a certain loading situation. 

 
Fig. 5:  Resulting von Mises stress for a homogeneous material (steel) with pure Hertzian normal load 

(load 66µN, contact radius 0.1µm) for different exponentially decreasing intrinsic stresses as 
given in section 5.1 with C0=1 and 0σ  given in the legend. 
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5.1. Homogenous half spaces 

We assume an intrinsic stress distribution of the form 
 0

0
C zI I

xx yy eσ σ σ −= = , 

which could for example occur when a mechanical surface treatment has been applied to a rim 
hardened steel sample. We investigate the resulting load carrying capacity with respect to 
plastic flow with a yield strength of 3GPa for the unstressed material. Fig. 5 shows that tensile 
stresses only increase the von Mises stress without significant changes of the stress 
distribution, meaning we still would find the von Mises Maximum along the axis of 
indentation. However, compressive biaxial intrinsic stresses, apart from decreasing the von 
Mises stresses, lead to a completely different picture. In fig. 5 the von Mises stress for the 
compressive intrinsic case was thus drawn along the x axis at z=16nm where we found the 
maximum, while this maximum for the unstressed and the tensile intrinsic stress case was to 
be found much deeper underneath the contact zone. Here, for tensile and no intrinsic stresses, 
always an ellipsoid-like plastic zone would be formed while in the compressive case the von 
Mises maximum is to be found within a torus-like region beneath the contact surface resulting 
in a topologically completely different plastic zone if the yield strength would be exceeded. 
We will investigate this topologic development in more detail for layered materials in the next 
section. 

 

Fig. 6: Resulting von Mises stress distribution for pure normal loaded (52.7mN) bi-axially stressed 
coatings with different compressive coating stresses (material parameters are given in section 
5.2). The stresses are always drawn at the lateral position of the maximum. 
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5.2. Layered half spaces with monolithic layers 

We now want to investigate the effect of increasing compressive stresses on the resulting von 
Mises stress distribution for a single layer 1µm-hard-coating-substrate system with 450GPa 
Young’s modulus for the coating (Poisson’s ratio 0.25) and 220GPa for the steel substrate 
(Poisson’s ratio 0.3). We find (fig. 6) that with an increasing compressive and homogeneously 
distributed biaxial coating stress the von Mises maximum “wanders” from the symmetry axis 
at the interface within the hard coating towards the surface near the contact rim (fig. 7). We 
also find that the von Mises maximum decreases with increasing compressive coating 
stresses. This might lead us to the conclusion that compressive coating stresses are a good 
thing if it comes to protect coatings from plastic flow. Yes, but we have to be cautious here 
when we deal with mixed loading conditions, because in that case the compressive stresses 
might not be as “helpful” as they appear to be in the pure normal loading state (fig. 8). For 
relatively high friction coefficients or sticking contact situations namely, the von Mises 
maximum appears on the surface and here (under the same contact loading condition – c.f. 
fig. 8) the stress in the compressively stressed coating might even exceed its limit of stability 
(yield strength) earlier than the coating with no intrinsic stress. This means however, that 
finding high hardness (respectively yield strength) with the classical nanoindenter (pure 
normal load) does not automatically mean that this high hardness (yield strength) does apply 
to all loading conditions, because the apparently high hardness value might just be the result 
of rather high compressive intrinsic stresses. This is of special importance when lifetime 
predictions, stability limits and the behaviour with respect to mechanical wear shall be 
extracted from indentation experiments. Then the intrinsic stress should be known and taken 
into account with respect to the expected loading conditions of the later application in 
question. 
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Fig. 7: Resulting von Mises stress distribution for pure normal loaded (52.7mN) bi-axially stressed 

coatings with –5GPa compressive coating stresses (material parameters are given in section 5.2). 

5.3. Layered half spaces with graded coatings 

There exist quite a variety of recently published papers (e.g. [24]) suggesting the use of 
functionally graded coatings in order to improve their reliability and load carrying capacity. 
Here we want to investigate their behaviour under the existence of intrinsic stresses. As 
example we consider the “optimum” design proposed in [24] with a Young’s modulus shape 
perfectly fitting to the substrate, increasing towards the surface, reaching a plateau and then 
decreasing again in order to reduce tensile surface stresses. Even though one might argue that 
for most practical graded coating systems (e.g. [25]) the intrinsic stress would change with the 
Young’s modulus due to their connection within the deposition process, we here assume 
constant intrinsic coating stresses in order to allow comparison with the monolithic coatings 
considered in the section above. However, with the software system [23] such intrinsic stress 
distributions can be modelled easily together with the functionally graded coatings. Here the 
function for the Young’s modulus profile can be given as  

E(z)=-(z-0.3µm)2 469GPa/1µm+450GPa.  
The result is shown in figure 9. We do not only find that the gradient coating without intrinsic 
stress reaches a higher von Mises stress maximum than a homogeneous 450GPa-coating 
would reach at the same load, but that the development of a torus-like von Mises maximum 
region starts at much higher compressive coating stresses. Thus, we see that the knowledge of 
the real structure - monolithic, abrupt layered or graded - of a given coating system is of great 
importance for the discussion of the influence of intrinsic stresses and external loads. 
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Fig. 8: Resulting von Mises stress distribution for mixed normal (33mN) and lateral load (µ=0.5) on the coating 
system given in section 5.2 for no intrinsic stress and biaxial compressive coating stress of –5GPa. 

5.4. About the modelling-potentials of certain defe cts 

With the introduction of a “defect model” of the type given in section 2.3, the variety of 
accessible intrinsic stress distributions is infinite and cannot be comprehensively discussed 
within this paper. It should be mentioned, however, that by superposing such defects in great 
number and in distinct patterns beneath the surface of our material of interest, effects like 
surface treatment and residual plastic stresses or any other intrinsic stress distributions being 
residuals from former loading situations could be taken into account. As an example we 
restrict ourselves here to the consideration of the use of “shear-load-defect-models” at the 
interface between coating and substrate. We assume that a defect of the loading form given in 
(9) is caused by a mismatch of the thermal expansion coefficient between coating and 
substrate and that the defect is used as modelling tool in order to provide constant normal 
lateral stresses within the coating. We find a relatively good simulation with the following set 
of constants for the loading approach (9): 

2 4 6
,0 ,2 ,4 ,61, 0.5014* , 0.3452* , 0.4957*i i i ic c a c a c aτ τ τ τ

− − −= = = = . 

By choosing a sufficiently big defect radius “a”, the area of almost constant lateral normal 
stress can be made as big as possible. So would for example our 1µm-450GPa-steel-system 
require a defect radius a of 100µm in order to find rather homogenous lateral normal stresses 
within a radius of about 70µm. For higher accuracy or special intrinsic stress distributions 
simply more of such defects have to be superposed. This superposition can also lead to 
interlinking defect areas as shown in figure 2, where it was used for a special surface stress 
distribution.  
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Fig. 9: Resulting von Mises stress distribution for pure normal loaded (52.7mN) bi-axially stressed 

gradient coatings with different compressive coating stresses (material parameters are given in 
section 5.3). The stresses are always drawn at the lateral position of the maximum. 

6. Hypothetical method of determining intrinsic stresses in layered 

materials via nanoindentation 

The problem of measuring intrinsic stresses in monolithic materials using nanoindentation 
techniques has been proved experimentally possible by Swadener et al [26] and Taljat and 
Pharr [27]. Some experimental results concerning the immense influence of the intrinsic film 
stresses on the measured indentation hardness have been published by Coronal et al [28]. 
Using finite element modelling, Anantha Ram et al [29] have evaluated the Young’s modulus 
and the residual stresses from nanoindentation experiments. Here we discuss the possible 
application of this method on the measurement of intrinsic thin-film-stresses using the 
analytical analysing techniques introduced above. 
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Fig. 10: Schematic presentation of Pharr’s concept of the effectively shaped indenter.  

6.1. Applying pure normal and mixed normal-lateral loads with sharp 

indenters 

In [11], Schwarzer has considered a variety of methods to determine intrinsic film stresses by 
means of spherical indenters. However, the main disadvantage of the methods dependent on 
spherical or other blunt indenters as described there is the necessity of determining the yield 
strength within a cyclic loading unloading procedure with well defined blunt indenters. This 
increases the error liability of the method. Desirable would be a method allowing the 
determination of this parameter within “one go”, meaning that only one cycle of penetration 
would suffice in order to obtain a proper value for either the yield strength or other limiting 
mechanical parameters. Such a method is already at hand. It is called the “concept of the 
effectively shaped indenter” and has been introduced in the form used here by G. M. Pharr 
some years ago (see e.g. [30]). Using an extended Hertzian approach [12], the author has been 
able to apply this method to monolithic, single layer and even functionally-graded coated 
materials (see also [14 - 17] and [25, 31]). As the method is extensively described in the four 
papers mentioned above, only a very brief description shall be given here. 
We assume an otherwise arbitrarily shaped sharp indenter (Vickers, Berkowich, etc.) being 
pressed into a layered material producing an elastic-plastic state of deformation (fig. 10, left 
part). It is known that in quite a lot of cases - after a sufficient holding time - the unloading 
process starts completely elastically. The basic idea behind “the concept of the effectively 
shaped indenter” is to find a blunt indenter of symmetry of revolution which would produce 
the same unloading curve as the original sharp indenter does in the beginning of the unloading 
process. This is done by making use of a “quasi conform geometrical transformation” of the 
surfaces of sample and indenter. This way the otherwise very cumbersome boundary 
conditions of the purely elastic unloading process directly after the indenter has reached its 
maximum depth can dramatically be simplified. The reason is the substitution of the problem 
of a well defined indenter acting on a pre-deformed surface by the problem of an effectively 
shaped indenter and a flat surface (fig. 10, right part). This allows a better discussion of the 
load-displacement curve in connection with the effects occurring during the penetration 
process. 
Now we propose the following measuring procedure: 
1. The yield strength is determined using the method of the effectively shaped indenter as 
presented above. However, during unloading, the indenter is only drawn back to a distinct 
fraction of the maximum load p0. This load shall be called p1. The reader should note that p1 
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must be chosen such that on the one hand there is “enough unloading curve” for the 
determination of the shape of the effective indenter, and on the other hand the load is still big 
enough in order to avoid strong and dominant inelastic unloading effects like e.g. unloading 
fractures. In addition, a p1 close to p0 also assures that the shape of the effective indenter only 
changes in an insignificant manner during unloading. We call the determined yield strength 

crit
Mσ . Here we now have to add the two elastic fields resulting from the intrinsic stresses Iijσ  

and the nanoindenter loading Lijσ . The von Mises stress can be written in the following form: 

 ( ) ( ) ( ) ( )( )2 2 2 2 2 21
6*

2M xx yy zz yy xx zz xy xz zyσ σ σ σ σ σ σ τ τ τ= − + − + − + + +  

with I L
ij ij ijσ σ σ= + .  

2. Now a slowly oscillating tangential load component tx with increasing amplitude is added 
and the resulting lateral shift is measured. So we now have mixed load conditions and assume 
our - in step one determined - effectively shaped indenter acting with the combined load 
components p1 and tx onto the coating substrate compound. 
3. The slowly oscillating tangential loading with increasing amplitude is monitored with very 
high resolution (as well as the static normal load and displacement, of course) until nonlinear 
behavior can be detected. Thus, the value of maximum tangential load tx=tcrit or maximum 
lateral displacement uσ is determined. Now we introduce the following assumption: The 
combined stresses add up to a mechanical stress field producing a maximum von Mises stress 

crit
M Mσ σ=  somewhere within the investigated coating material. 

4. With these two measurements and the resulting measured values p0, p1, the corresponding 
penetration depth, tcrit and uσ we can construct two linear independent equations  

 

( )( ) ( )( )
( )( )

( )

2 2

2

2 2 2

1

2
6* ( ) ( ) ( )

L L f I I L L f I I
xx yy rr xx yy zz yy rr zz yy

crit L L f I I
M xx zz rr xx zz

L f I L f I L f I
xy rr xy xz rr xz zy rr zy

f f f f

f f

f f f

σ σ σ σ σ σ

σ σ σ σ

τ σ τ σ τ σ

 − + − + − + − 
 

= + − + − 
 

+ + + + + +  
 

, 

for the critical von Mises stress respectively yield strength with two different nanoindenter 
stress distributions L

ijσ  resulting from the pure normal loading L normal load
ij ijσ σ=  and the mixed 

loading experimental setup L mixed load
ij ijσ σ= . We have used the fact, that according to our 

approach (8) for the intrinsic stresses we can write the intrinsic stress field as 

( )* , , *I f I f I
ij rr ij rr ijf x y z fσ σ σ= ≡  with a suitable function f(x,y,z). Due to the linear 

independence of the two loading conditions we can now extract the intrinsic stress value frrσ  
residing in the coating and the critical von Mises stress of an corresponding unstressed 
material ( 0f

rrσ = ), meaning the von Mises stress this unstressed material would require in 

order to reach its yield strength limit crit
M Mσ σ= .  

The above described analyzing procedures shall now be demonstrated on some very first 
experimental examples. The measurements have been performed by T. Chudoba from the 
company ASMEC using a so called UNAT measurement system [1] equipped with a lateral 
force unit (LFU) which can generate und measure lateral forces und displacements with the 
same resolution like common nanoindenters in normal direction. 
Four samples with 3µm CrN-coatings on silicon have been investigated with different but 
known biaxial stresses. A detailed description of the intrinsic stress determination and the 
nanoindentation procedures will be published elsewhere [32]. At first, Young’s modulus, 
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hardness H and yield strength Y have been determined using classical normal nanoindentation 
together with the concept of the effectively shaped indenter. The results are given in table 1.  
Table 1: Results of the classical Berkowich nanoindentation experiments for four different samples at 3 

different loads. The yield strength “mixed Y” has been extracted from the experimental data by 
applying the method of the effective indenter [12]. The word “mixed” means, that the yield 
strength has not been corrected with respect to the intrinsic stresses. 

Sample intr. Stresses F Hc H dH mixed Y E dE ny 
 No. GPa mN µm GPa GPa GPa GPa GPa   

1   4,9948 0,151 5,83 0,42 6,13 287,9 29,5 0,25 
1 -0,09 29,976 0,378 6,48 0,18 6,71 280,3 13,0 0,25 
1   99,99 0,675 7,24 0,14 7,32 238,0 6,2 0,25 
2   4,9974 0,090 14,71 0,93 15,45 286,8 19,5 0,25 
2 -1,1 29,989 0,245 15,06 0,56 15,60 268,1 11,7 0,25 
2   99,997 0,457 15,39 0,26 15,57 234,9 4,5 0,25 
3   4,996 0,083 17,00 5,85 15,60 265,5 91,3 0,25 
3 -1,9 29,964 0,215 19,16 2,48 19,02 286,5 38,0 0,25 
3   99,998 0,416 18,47 0,62 18,00 265,8 9,8 0,25 
4   4,9845 0,092 14,19 2,38 14,45 273,7 48,9 0,25 
4 -1,2 29,984 0,255 13,85 0,86 14,62 279,1 25,0 0,25 
4   99,992 0,460 15,20 0,64 15,52 246,0 12,6 0,25 

 
Table 2: Lateral force measurement - no tilting moment taken into account. 

Results of the mixed normal and lateral load nanoindentation experiments with a 6µm diamond 
sphere for four different samples. The yield strength Y, the critical tensile stress XX and non-
critical von Mises maxima σσσσM have been extracted from the experimental data by applying the 
method of the effective indenter [12]. The word “mixed” means, that the yield strength has not 
been corrected with respect to the intrinsic stresses, while “correct” stands for the 
corresponding material parameters without intrinsic stresses. Here we need to point out that, 
because a second linear independent indentation was not applicable for the determination of 
yield strength and intrinsic stresses separately, the evaluation of the correct σσσσM was performed 
with the known intrinsic stress values  (known from X-ray scattering measurements [32]) as 
they are given in table 1. 

No. p0 mixed Y correct Y p1 Tx mixed σM correct σM correct σM on mixed XX on correct XX on 
 mN GPa GPa mN mN GPa GPa surface in GPa surface in GPa surface in GPa 

1 250 7,33 7,24 175 11 5,56 5,48 4,81 3,37 3,28 
2 250 15,68 14,86 175 6 12,38 11,49 9,34 5,99 4,89 
3 250 18,31 16,71 175 7,5 14,53 13,47 11,06 7,77 5,87 

4 250 14,52 13,75 175 9 11,49 10,57 9,16 6,51 5,31 
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Fig. 11: Resulting normal lateral stress in x-direction for sample 3 under combined load in normal 

(175mN) and lateral (7.5mN) direction (see table 2) using a 6µm diamond sphere – real 
experiment. 

 
From the relatively small differences between the yield strength values for the three different 
loads one can deduce that the coatings were quite homogenous. This especially holds for 
sample 2. According to our measurement procedure as proposed above we would require a 
combined normal and lateral measurement regime. This was in fact done with all samples but, 
in order to avoid discussions about the possible effects of the Berkowich edges, all 
measurements were also performed with a 6µm spherical indenter in the plastic regime. We 
detected similar results for both types of indenters, but in order to avoid overloading the paper 
with experimental results, we restrict the presentation here to the spherical indents. A more 
comprehensive presentation will be published elsewhere [32]. The maximum load p0 was 
chosen to be 250mN and the lateral load circle was started at a p1=0.7*p0. The detected 
critical lateral loads tx are presented in table 2. Unfortunately the samples (seemingly � see 
6.1.1) appeared to produce failure due to surface fracture, which did not provide the necessary 
second linear independent measurement for the yield strength as it would be required for the 
determination of the intrinsic stress. Nevertheless, the “mixed” and the corrected values for 
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yield strength and critical tensile surface stress XX (see table 2) show clearly the importance 
of the knowledge of the intrinsic stresses. The values for yield strength and critical tensile 
surface stress XX have been determined by the use of the “concept of the effective indenter 
for layered materials” as presented for example in [16, 17] and briefly described above. We 
find that without taking into account intrinsic stresses, especially the critical tensile stresses 
would be severely overestimated for the samples 2, 3 and 4. Figure 11 shows the normal 
stress in x-direction in the moment of critical mixed normal (p1=175mN) and lateral loading 
(tx=7.5mN) for the sample 3. The huge influence of the rather small lateral load, compared to 
the normal one, is caused by the fact that the indenter must be considered as tilted towards the 
sample surface within the lateral loading process. 

 
Fig. 12:  Resulting v. Mises stress in the x-z-plane for sample 3 under the combined load in normal 

direction (175mN), lateral (7.5mN) and indenter tilting (M t=38.1mN, see table 3) using a 6µm 
diamond sphere. The stress is evaluated for the moment of beginning inelastic behaviour. The 
maximum (cross within the contour plot) almost perfectly agrees with the previously found 
yield strength Y (c.f. table 3). 

6.1.1. The dramatic effect of a tilting indenter shaft 

Apart from the possibility that those coatings in fact might have shown failure due to surface 
fracture, there is also another possible explanation. In our case of lateral loading experiments 
all the evidence (limited lateral stiffness and comparison with other – known - results) seems 
to point to a slightly tilted indenter shaft. Assuming the resulting tilting moment of linear 
character, we simply postulate a tilting load with the dimension of a force Mt as: 
 *t xM const T= . (17) 
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By using one of our samples (sample number 2 in table 2 and 3) as calibrator, we are able to 
determine const. This was simply done by looking for the tilting load necessary to produce the 
required additional von Mises stress in order to reach the yield strength Y. Now we can 
evaluate the resulting tilting angle δ  for all samples and mixed load indentations by means of 
the following formula [22] 

 ( ) ( ) [ ]
2

2 2

3* * 1 1 2
; ; ; ln 3 4

2 1 24 1
t

x

MH
T H

Ea

α ν ν πδ α ϑ ν
ϑ π νϑ

− − = − = = = −  −+  
. (18) 

The results are given in table 3. With Mt and δ  known, we reevaluated the von Mises stresses 
for all samples and then obtained almost perfectly the von Mises stress maxima found to be 
critical in the previous purely normal nanoindentation experiments. This, together with the 
additional information that within this loading range the typical tilting angle would lay below 
0.1°  (found with well defined homogeneous samples), makes it almost certain that indeed a 
small but non-negligible tilting of the indenter has taken place here. The huge influence of 
very small tilting angles can bee seen in figure 12, where for sample 3 a very small angle of 
only 0.0656° already provides a rather influential tilting moment. It can also be concluded that 
by finding an other way to determine the tilting angle or the proportionality constant const, 
intrinsic stress and yield strength could be measured directly by the means of a combination 
of normal and mixed loading procedures. This directly follows from the excellent agreement 
of the expected Y and the evaluated von Mises stress (c.f. table 3).  
A very detailed demonstration of how to perform the evaluation is given in the appendix. 
 
Table 3: Lateral force measurement - tilting of indenter shaft now taken into account. 

Results of the mixed normal and lateral load nanoindentation experiments with a 6µm diamond 
sphere for four different samples. By contrast to the results given in Table 2 now a rather small 
but very “influential” tilting of the indenter has been taken into account thereby using sample 2 
for linear calibration of tilting load of all other  indents (see text). The yield strength Y and the 
now critical von Mises maxima σσσσM have been extracted from the experimental data by applying 
the method of the effective indenter [12]. The word “mixed” means, that the yield strength has 
not been corrected with respect to the intrinsic stresses, while “correct” stands for the 
corresponding material parameters without intrinsic stresses. 

No. p0 mixed Y correct Y p1 Tx tilting load tilting angle mixed σM correct σM 

 mN GPa GPa mN mN mN in grad ° GPa GPa 

1 250 7,33 7,24 175 11 56,0 0,0377 7,35 7,27 
2 250 15,68 14,86 175 6 30,5 0,0470 15,99 14,86 
3 250 18,31 16,71 175 7,5 38,1 0,0656 18,83 16,79 

4 250 14,52 13,75 175 9 45,8 0,0658 14,89 14,11 
 

6.2. Incorporation of torque - maintaining the symm etry of revolution 

We now introduce the hypothetic indentation experiment with combined normal and torque 
loading. We see (table 4) that we can either reach the moment of beginning plastic flow 
(samples 1, 3 and 4) without surface fracture, or produce surface fracture again but at a non-
critical von Mises stress. If we were able to measure torque and angle of revolution and would 
also detect the moments of beginning inelastic behavior, we could evaluate not only the 
correct value of critical stress (not mixed up with the intrinsic stresses) for the failure 
mechanism in question, but also could extract the intrinsic stress itself. 
This means an indenter with a revolution force and measurement system for the torque angle 
around the axis of indentation appears to be quite desirable. 
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Table 4: Results of hypothetic mixed normal and rotation nanoindentation experiments with a 6µm 
diamond sphere for four different samples. The torque load (defined due to 

( ) 2 2 2

10 0

, 0 /
a a N

n
ROT z

n

M r z dr r a r drθσ
=

  = = −  
  
∑∫ ∫ ) has been chosen such that the 

maximum von Mises stress σσσσM is slightly bigger than the critical one. The tensile stress maxima 
σσσσxx show, that except for sample 2 the critical von Mises maxima Y can be reached under mixed 
loading conditions without producing surface fracture. The word “correct” stands for the 
corresponding material parameters and stress values without intrinsic stresses (c.f. Table 2). 

Sample p0 correct Y p1 MROT correct σM correct σM on correct σxx on 

No. MN GPa mN mN GPa surface in GPa surface in GPa 

1 250 7,24 175 29,5 7,28 7,28 3,02 
2 250 14,86 175 26,0 14,86 14,86 5,36 
2 250 14,86 175 23,2 13,55 13,55 4,89 
3 250 16,71 175 27,3 16,71 16,71 5,86 
4 250 13,75 175 26,7 13,77 13,77 5,11 

 

7. Conclusions 

It has been shown that critical stresses for distinct mechanical surface failure mechanisms and 
intrinsic stresses residing in the material’s surface could be separately determined by the 
means of depth sensing nanoindetnation experiments with additional lateral load components. 
Within the paper, lateral and rotating loads have been investigated. While the combined 
normal and lateral load could be already realised with the help of a UNAT nanoindentation 
system, the rotating load is still rather hypothetic. Mixed normal and lateral loading 
procedures were used for the determination of yield strength and either intrinsic or critical 
tensile stress for surface fracture or similar surface damage sensitive to tensile stresses. It 
became clear that the tilting of the indenter is a very important factor which must be taken 
into account during the analysing of the indentation data. 
It has further been shown how intrinsic stresses influence the resulting stress distribution of 
additional contact loads and the resulting load carrying capacity. The investigation has been 
performed for examples of homogenous half spaces, layered materials with monolithic and 
functionally graded coatings. In addition, the use of certain defects for the modelling of more 
complex intrinsic stress distributions or as stresses being residuals from former loading 
situations, has been considered. 
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Appendix - How to measure intrinsic stresses via 

nanoindentation – an example 
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Abstract  

In the following study the measurement an analysis of intrinsic stresses and yield strength via 
nanoindentation and their separation from each other will be elaborated using a specific 
example. The results for the intrinsic stresses are compared with those determined by other 
means. The agreement is excellent. 

Introduction 

Yield strength values obtained via nanoindentation are often flawed by the intrinsic stresses 
residing in the surfaces area of the samples in question. Within this study the procedure 
necessary to separate the intrinsic stresses and determine correct yield strength values is 
demonstrated on thin films with known biaxial intrinsic stresses.  
In main paper (here referred as [A1]) the author has proposed the following measuring 
procedure: 
1. The yield strength is determined using the method of the effectively shaped indenter as 
presented in [A1]. However, during unloading, the indenter is only drawn back to a distinct 
fraction of the maximum load p0. This load shall be called p1. The reader should note that p1 
must be chosen such that on the one hand there is “enough unloading curve” for the 
determination of the shape of the effective indenter, and on the other hand the load is still big 
enough in order to avoid strong and dominant inelastic unloading effects like e.g. unloading 
fractures. In addition, a p1 close to p0 also assures that the shape of the effective indenter only 
changes in an insignificant manner during unloading. We call the determined yield strength 

crit
Mσ . Here we now have to add the two elastic fields resulting from the intrinsic stresses Iijσ  

and the nanoindenter loading Lijσ . The von Mises stress can be written in the following form: 

 ( ) ( ) ( ) ( )( )2 2 2 2 2 21
6*

2M xx yy zz yy xx zz xy xz zyσ σ σ σ σ σ σ τ τ τ= − + − + − + + +  

with I L
ij ij ijσ σ σ= + .  

2. Now a slowly oscillating tangential load component tx with increasing amplitude is added 
and the resulting lateral shift is measured. So we now have mixed load conditions and assume 
our - in step one determined - effectively shaped indenter acting with the combined load 
components p1 and tx onto the coating substrate compound. 
3. The slowly oscillating tangential loading with increasing amplitude is monitored with very 
high resolution (as well as the static normal load and displacement, of course) until nonlinear 
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behavior can be detected. Thus, the value of maximum tangential load tx=tcrit or maximum 
lateral displacement uσ is determined. Now we introduce the following assumption: The 
combined stresses add up to a mechanical stress field producing a maximum von Mises stress 

crit
M Mσ σ=  somewhere within the investigated coating material. 

4. With these two measurements and the resulting measured values p0, p1, the corresponding 
penetration depth, tcrit and uσ we can construct two linear independent equations  

 

( )( ) ( )( )
( )( )

( )

2 2

2

2 2 2

1

2
6* ( ) ( ) ( )

L L f I I L L f I I
xx yy rr xx yy zz yy rr zz yy

crit L L f I I
M xx zz rr xx zz

L f I L f I L f I
xy rr xy xz rr xz zy rr zy

f f f f

f f

f f f

σ σ σ σ σ σ

σ σ σ σ

τ σ τ σ τ σ

 − + − + − + − 
 

= + − + − 
 

+ + + + + +  
 

, 

for the critical von Mises stress respectively yield strength with two different nanoindenter 
stress distributions L

ijσ  resulting from the pure normal loading L normal load
ij ijσ σ=  and the mixed 

loading experimental setup L mixed load
ij ijσ σ= . We have used the fact, that according to our 

approach (eq. (8) in [A1]) for the intrinsic stresses we can write the intrinsic stress field as 

( )* , , *I f I f I
ij rr ij rr ijf x y z fσ σ σ= ≡  with a suitable function f(x,y,z). Due to the linear 

independence of the two loading conditions we can now extract the intrinsic stress value frrσ  
residing in the coating and the critical von Mises stress of a corresponding unstressed material 
( 0f

rrσ = ), meaning the von Mises stress this unstressed material would require in order to 

reach its yield strength limit crit
M Mσ σ= .  

The measurement and analyzing procedure in praxis 

The above described analyzing procedures shall now be demonstrated on some very first 
experimental examples. The measurements have been performed by T. Chudoba and V. Linss 
from the company ASMEC using a so called UNAT measurement system [A2] equipped with 
a lateral force unit (LFU) which can generate und measure lateral forces und displacements 
with the same resolution like common nanoindenters in normal direction. 
Four samples with 3µm CrN-coatings on silicon have been investigated with different but 
known biaxial stresses. A detailed description of the intrinsic stress determination and the 
nanoindentation procedures will be published elsewhere [A3]. Here we want to concentrate on 
the analysis of the experimental data. At first, Young’s modulus, hardness H and yield 
strength Y have been determined using classical normal nanoindentation. The results are 
presented in [A1, table 1]. Now we want to follow the concrete procedure for one of those 
samples. For this we chose sample number 3 of [A1]. 
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Analyzing procedure step I: pure normal indentation  with max. load p 0 

 

 
Fig. 1 and 2: Material data-input and fit of effective indenter to unloading curve 
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Using the software FilmDoctor, we first type in the material data Young’s modulus, 
Poissons’s ratio and thickness. As substrate we have silicon with a known Young’s modulus 
of 165GPa and Poisson’s ratio of 0.223. For the film we are estimating the Poisson’s ratio and 
use the values determined by the means of the procedure described in [A4]. Now we chose 
“fit load-depth-curve” from the load definition page, load the indentation curve and fit a 
paraboloid indenter to the same. The fit can be done by hand or automatically. The next step 
is the evaluation of the elastic field of the effective indenter in the moment of beginning 
unloading (maximum load p0). So, after setting up the parameters for the calculation (fig. 3). 

 
Fig. 3: Setting up the calculation-parameters and starting the evaluation 
 
We find the von Mises Maximum (fig. 4 with 18.8357GPa), which is still mixed with the yet 
unknown intrinsic stress. 
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Fig. 4a: Resulting von Mises stress for the contact parameters given in fig. 2 at max. load p0. 
Fig. 4b: As the effective indenter produces a rather non-Hertzian normal surface pressure 
distribution (normal stress z), the von Mises maximum is to be found outside the axis of 
indentation. 

4a 

4b 
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Analyzing procedure step II: mixed normal and later al indentation with 

maximum load 0.7*p 0 

Now we reduce the normal load to 0.7*p0 and start the lateral loading of the sample surface 
until again plastic flow respectively any other inelastic behavior can be observed. As effective 
indenter we either determine the new one for the reduced load by again fitting a paraboloid to 
the unloading curve after the lateral loading procedure or simply use the effective indenter 
from step I at reduced normal load. However, the latter is only possible when the surface 
shape of the inelastically deformed surface is not significantly changed during the lateral 
loading procedure, which would result in an incontinuity of the unloading curve at the 
position of the introduced load (blue ellipse in fig. 2). 
The author wants to point out here, that instead of a lateral load also inclined normal indention 
should allow to obtain a second measurement sufficiently linear independent from the pure 
normal loading. However, this would require a well calibrated equipment clearly assigning 
lateral tx and tilting load Mt to the indenter inclination and normal load. 

Analyzing procedure step III: evaluation of the von  Mises stress for the 

mixed normal and lateral indentation with normal lo ad 0.7*p 0 and lateral 

load t x 

We assume that at a normal load of 0.7*p0 and a lateral load tx inelastic behavior has been 
detected. Now we evaluate the von Mises stress for this mixed loading situation. As described 
in [A1] we have to take into account, that usually lateral or inclined indentation also produces 
indenter tilting. In the example considered here we found the following loading conditions: 

 
Fig. 5: Parameters for the mixed load evaluation 
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Fig. 6: Resulting von Mises stress for the mixed load situation. 
 

Analyzing procedure step IV: evaluation of the “pur e” yield strength and 

the intrinsic stress 

From the equations given above we can easily obtain a formula for the intrinsic film stress 
f

rrσ : 
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. (19) 

Assuming now only biaxial stress one simply has to compare the expected value for the 
unstressed case with the measured one crit

Mσ  and could evaluate f
rrσ  using equation (19), 

which can be dramatically simplified due to the fact that within the coating 1I I
xx yyf f= =  and 

all other 0I
ijf = . 

 
( ) ( )( )22 2 2 2

2 4 3 3

2

L L L crit L L L L L
xx yy zz M xx yy xy xz yz

f
rr

σ σ σ σ σ σ τ τ τ
σ

− − + ± − − + + +
= . (20) 

So the two measurements provide us with two equations we can solve with respect to crit
Mσ  

and f
rrσ  [A5].  

For the sample considered here we obtain crit
Mσ =16.6GPa and f

rrσ =-2.03GPa, with the latter 
being in very good agreement with the value measured by other means (-1.9GPa, c.f. [A3]). 
By taking the biaxial intrinsic stress fixed to its directly measured value of frrσ =-1.9GPa one 
would obtain two possible values for the yield strength, namely 16.79GPa in mixed loading 
and 16.71GPa in the pure normal loading case. 
From the small difference of these two values and the considerations presented in [A5] one 
can easily deduce, that measurement of intrinsic stresses via nanoindenter requires a very high 
accuracy and well calibrated equipment. However, the procedure described here could also be 
used as a simple estimator for the maximum value the intrinsic stress can not exceed and thus, 
giving more precise error bars for the yield strength (respectively hardness) determined from 
nanoindentation data. This way big hardness or yield strength values only obtained due to 
huge intrinsic compressive stresses will not pass as absolute material properties. Such an 
information is of special importance when nanoindenter results from pure normal loading 
states are going to be used in applications with mixed loading conditions. 
All evaluations have been performed using a special prototype of the software FilmDoctor 
[A6]. 
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